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Convex sets

In this section, we will be introduced to some of the mathematical
fundamentals of convex sets. In order to motivate some of the defini-
tions, we will look at the closest point problem from several different
angles. The tools and concepts we develop here, however, have many
other applications both in this course and beyond.

A set C ⊂ RN is convex if

x,y ∈ C ⇒ (1− θ)x + θy ∈ C for all θ ∈ [0, 1].

In English, this means that if we travel on a straight line between
any two points in C, then we never leave C.

These sets in R2 are convex:

These sets are not:
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Examples of convex (and nonconvex) sets

• Subspaces. Recall that if S is a subspace of RN , then
x,y ∈ S ⇒ ax + by ∈ S for all a, b ∈ R.
So S is clearly convex.

• Affine sets. Affine sets are just subspaces that have been offset
by the origin:

{x ∈ RN : x = y + v, y ∈ T }, T = subspace,

for some fixed vector v. An equivalent definition is that
x,y ∈ C ⇒ θx + (1− θ)y ∈ C for all θ ∈ R — the difference
between this definition and that for a subspace is that subspaces
must include the origin.

• Bound constraints. Rectangular sets of the form

C = {x ∈ RN : `1 ≤ x1 ≤ u1, `2 ≤ x2 ≤ u2, . . . , `N ≤ xN ≤ uN}

for some `1, . . . , `N , u1, . . . , uN ∈ R are convex.

• The “filled in” simplex in RN

{x ∈ RN : x1 + x2 + · · · + xN ≤ 1, x1, x2, . . . , xN ≥ 0}

is convex.

• Any subset of RN that can be expressed as a set of linear in-
equality constraints

{x ∈ RN : Ax ≤ b}

is convex. Notice that both rectangular sets and the simplex
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fall into this category — for the previous example, take

A =




1 1 1 · · · 1
−1 0 0 · · · 0
0 −1 0 · · · 0
... . . .
0 · · · −1



, b =




1
0
0
...
0



.

In general, when sets like these are bounded, the result is a
polyhedron.

• Norm balls. If ‖ · ‖ is a valid norm on RN , then

Br = {x : ‖x‖ ≤ r},

is a convex set.

• Ellipsoids. An ellipsoid is a set of the form

E = {x : (x− x0)
TP −1(x− x0) ≤ r},

for a symmetric positive-definite matrix P . Geometrically, the
ellipsoid is centered at x0, its axes are oriented with the eigen-
vectors of P , and the relative widths along these axes are pro-
portional to the eigenvalues of P .

• A single point {x} is convex.

• The empty set is convex.

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≤ 0}
is convex. (Sketch it!)
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• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 ≥ 0}
is not convex.

• The set
{x ∈ R2 : x2

1 − 2x1 − x2 + 1 = 0}
is certainly not convex.

• Sets defined by linear equality constraints where only some of
the constraints have to hold are in general not convex. For
example

{x ∈ R2 : x1 − x2 ≤ −1 and x1 + x2 ≤ −1}
is convex, while

{x ∈ R2 : x1 − x2 ≤ −1 or x1 + x2 ≤ −1}
is not convex.

Cones

A cone is a set C such that

x ∈ C ⇒ θx ∈ C for all θ ≥ 0.

Convex cones are sets which are both convex and a cone. C is a
convex cone if

x1,x2 ∈ C ⇒ θ1x1 + θ2x2 ∈ C for all θ1, θ2 ≥ 0.

Given an x1,x2, the set of all linear combinations with positive
weights makes a wedge. For practice, sketch the region below that
consists of all such combinations of x1 and x2:
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x2

x1

We will mostly be interested in proper cones, which in addition to
being convex, are closed, have a non-empty interior1 (“solid”), and
do not contain entire lines (“pointed”).

Examples:

Non-negative orthant. The set of vectors whose entries are non-
negative,

RN
+ = {x ∈ RN : xn ≥ 0, for n = 1, . . . , N},

is a proper cone.

Positive semi-definite cone. The set of N ×N symmetric matri-
ces with non-negative eigenvalues is a proper cone.

Non-negative polynomials. Vectors of coefficients of non-negative
polynomials on [0, 1],

{x ∈ RN : x1+x2t+x3t
2+· · ·+xNtN−1 ≥ 0 for all 0 ≤ t ≤ 1},

form a proper cone. Notice that it is not necessary that all
the xn ≥ 0; for example t − t2 (x1 = 0, x2 = 1, x3 = −1) is
non-negative on [0, 1].

Norm cones. The subset of RN+1 defined by

{(x, t), x ∈ RN , t ∈ R : ‖x‖ ≤ t}
1See Technical Details for precise definition.
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is a proper cone for any valid norm ‖ · ‖ and t > 0. (We
encountered this cone in our discussion about SOCPs in the
last set of notes.)

Every proper cone K defines a partial ordering or generalized
inequality. We write

x �K y when y − x ∈ K.

For example, for vectors x,y ∈ RN , we say

x �RN
+
y when xn ≤ yn for all n = 1, . . . , N.

For symmetric matrices X,Y , we say

X �SN
+
Y when Y −X has non-negative eigenvalues.

We will typically just use � when the context makes it clear. In fact,
for RN

+ we will just write x ≤ y (as we did above) to mean that
the entries in x are component-by-component upper-bounded by the
entries in y.

Partial orderings obey share of the properties of the standard ≤ on
the real line. For example:

x � y, u � v ⇒ x + u � y + v.

But other properties do not hold; for example, it is not necessary
that either x � y or y � x. For an extensive list of properties of
partial orderings (most of which will make perfect sense on sight) can
be found in [BV04, Chapter 2.4].
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Affine sets

Recall the definition of a linear subspace: a set T ⊂ RN is a subspace
if

x,y ∈ T ⇒ αx + βy ∈ T , for all α, β ∈ R.
Affine sets (also referred to as affine spaces) are not fundamentally
different than subspaces. An affine set S is simply a subspace that
has been offset from the origin:

S = T + v0,

for some subspace T and v0 ∈ RN . (It thus make sense to talk
about the dimension of S as being the dimension of this underlying
subspace.) We can recast this as a definition similar to the above: a
set S ⊂ RN is affine if

x,y ∈ S ⇒ λx + (1− λ)y ∈ S, for all λ ∈ R.

Just as we can find the smallest subspace that contains a finite set
of vector {v1, . . . ,vK} by taking their span,

Span({v1, . . . ,vK}) =

{
x ∈ RN : x =

K∑

k=1

αkvk, αk ∈ R

}
,

we can define the affine hull (the smallest affine set that contains
the vectors) as

Aff({v1, . . . ,vK}) =

{
x ∈ RN : x =

K∑

k=1

λkvk, λk ∈ R,
K∑

k=1

λk = 1

}
.

Example: Let

v1 =

[
1
0

]
, v2 =

[
1/2
1/2

]
.
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Then Span({v1,v2}) is all of R2 while Aff({v1,v2}) is the line that
connects v1 and v2,

Aff({v1,v2}) =
{
x ∈ R2 : x1 + x2 = 1

}
.

Just as any linear subspace T of dimension K can be described using
a homogeneous set of equations,

x ∈ T ⇔ Ax = 0,

using any (N −K)×N matrix A whose nullspace is T , any affine
set S of dimension K can be described as the solution to a linear
system of equations

x ∈ S ⇔ Ax = b,

for some (N −K)×N matrix A and b ∈ RN−K.

It should be clear that every subspace is an affine set, but not every
affine set is a subspace. It is easy to show that an affine set is a
subspace if and only if it contains the 0 vector.

Affine sets are of course convex.

Hyperplanes and halfspaces

Hyperplanes and halfspaces are both very simple constructs, but they
will be crucial to our understanding to convex sets, functions, and
optimization problems.

A hyperplane is an affine set of dimension N − 1; it has the form

{x ∈ RN : 〈x,a〉 = t}
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for some fixed vector a 6= 0 and scalar t. When t = 0, this set is
a subspace of dimension N − 1, and contains all vectors that are
orthogonal to a. For t 6= 0, this is an affine space consisting of all
the vectors orthogonal to a (call this set A⊥) offset to some x0:

{x ∈ RN : 〈x,a〉 = t} = {x ∈ RN : x = x0 +A⊥},
for any x0 with 〈x0,a〉 = t. We might take x0 = t · a/‖a‖22, for
instance. The point is, a is a normal vector of the set.

Here are some examples in R2:

1 2 3 4 5

1

2

3

4

5

�1

t = 1 t = 5t = �1

<latexit sha1_base64="M1Fz+g8AWbpYRY64DpjJRqAdUBo=">AAACHXicbVDLSsNAFJ3UV62vqks3g0VwVRIp2o1QcOOygn1AE8pkctMOnUzCzEQsIT/ixl9x40IRF27Ev3H6QLT1wDCHc+7l3nv8hDOlbfvLKqysrq1vFDdLW9s7u3vl/YO2ilNJoUVjHsuuTxRwJqClmebQTSSQyOfQ8UdXE79zB1KxWNzqcQJeRAaChYwSbaR+ueb6MQ/UODJfRnJ8iV0fBkxkfkS0ZPc5dlwX29gFEfxo/XLFrtpT4GXizEkFzdHslz/cIKZpBEJTTpTqOXaivYxIzSiHvOSmChJCR2QAPUMFiUB52fS6HJ8YJcBhLM0TGk/V3x0ZidTkAFNp9huqRW8i/uf1Uh3WvYyJJNUg6GxQmHKsYzyJCgdMAtV8bAihkpldMR0SSag2gZZMCM7iycukfVZ1zqu1m1qlUZ/HUURH6BidIgddoAa6Rk3UQhQ9oCf0gl6tR+vZerPeZ6UFa95ziP7A+vwG54GiZg==</latexit>

a =


1
0

�
1

2

3

4

5

1 2 3 4 5�1

t = 5t = 1

<latexit sha1_base64="kc1SV4vC3OZ6kQgjaXPGd2X/2Ys=">AAACHXicbVDLSsNAFJ34rPVVdelmsAiuSlKKdiMU3LisYB/QhDKZ3LRDJ5MwMxFL6I+48VfcuFDEhRvxb5y2QbT1wDCHc+7l3nv8hDOlbfvLWlldW9/YLGwVt3d29/ZLB4dtFaeSQovGPJZdnyjgTEBLM82hm0ggkc+h44+upn7nDqRisbjV4wS8iAwECxkl2kj9Us31Yx6ocWS+jEzwJXZ9GDCR+RHRkt1PcNV1sYNdEMGP1i+V7Yo9A14mTk7KKEezX/pwg5imEQhNOVGq59iJ9jIiNaMcJkU3VZAQOiID6BkqSATKy2bXTfCpUQIcxtI8ofFM/d2RkUhNDzCVZr+hWvSm4n9eL9Vh3cuYSFINgs4HhSnHOsbTqHDAJFDNx4YQKpnZFdMhkYRqE2jRhOAsnrxM2tWKc16p3dTKjXoeRwEdoxN0hhx0gRroGjVRC1H0gJ7QC3q1Hq1n6816n5euWHnPEfoD6/Mb6qmiaA==</latexit>

a =


2
1

�

A halfspace is a set of the form

{x ∈ RN : 〈x,a〉 ≤ t}
for some fixed vector a 6= 0 and scalar t. For t = 0, the halfspace
contains all vectors whose inner product with a is negative (i.e. the
angle between x and a is greater than 90◦). Here is a simple example:
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1

2

3

4

5

1 2 3 4 5�1

t = 5

<latexit sha1_base64="kc1SV4vC3OZ6kQgjaXPGd2X/2Ys=">AAACHXicbVDLSsNAFJ34rPVVdelmsAiuSlKKdiMU3LisYB/QhDKZ3LRDJ5MwMxFL6I+48VfcuFDEhRvxb5y2QbT1wDCHc+7l3nv8hDOlbfvLWlldW9/YLGwVt3d29/ZLB4dtFaeSQovGPJZdnyjgTEBLM82hm0ggkc+h44+upn7nDqRisbjV4wS8iAwECxkl2kj9Us31Yx6ocWS+jEzwJXZ9GDCR+RHRkt1PcNV1sYNdEMGP1i+V7Yo9A14mTk7KKEezX/pwg5imEQhNOVGq59iJ9jIiNaMcJkU3VZAQOiID6BkqSATKy2bXTfCpUQIcxtI8ofFM/d2RkUhNDzCVZr+hWvSm4n9eL9Vh3cuYSFINgs4HhSnHOsbTqHDAJFDNx4YQKpnZFdMhkYRqE2jRhOAsnrxM2tWKc16p3dTKjXoeRwEdoxN0hhx0gRroGjVRC1H0gJ7QC3q1Hq1n6816n5euWHnPEfoD6/Mb6qmiaA==</latexit>

a =


2
1

�

Separating hyperplanes

If two convex sets are disjoint, then there is a hyperplane that sepa-
rates them. Here is a picture:

C

D

This fact is intuitive, and is incredibly useful in understanding the
solutions to convex optimization programs (we will see this even in

10
Georgia Tech ECE 6270 Notes by M. Davenport and J. Romberg. Last updated 15:30, October 11, 2022



the next section). It is also not true in general if one of the sets is
nonconvex; observe:

For sets C,D ⊂ RN , we say that a hyperplaneH = {x : 〈x,a〉 = t}
• separates C and D if for all c ∈ C, d ∈ D

〈c,a〉 ≤ t ≤ 〈d,a〉 for all c ∈ C, d ∈ D; (1)

• properly separates C and D if (1) holds and both C and D are
not contained in H themselves;

• strictly separates C and D if

〈c,a〉 < t < 〈d,a〉 for all c ∈ C, d ∈ D;

• strongly separates C and D if there exists ε > 0 such that

〈c,a〉 ≤ t− ε and 〈d,a〉 ≥ t + ε for all c ∈ C, d ∈ D.

Note that we can switch the roles of C and D above, i.e. we also say
H separates C and D if 〈d,a〉 ≤ t ≤ 〈c,a〉 for all c ∈ C,d ∈ D.

Let us start by showing the following:
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Strong separating hyperplane theorem
Let C and D be disjoint nonempty closed convex sets and let C
be bounded. Then there is a hyperplane that strongly separates
C and D.

To prove this, we show how to explicitly construct a strongly sepa-
rating hyperplane. Let d(x,D) be the distance of a point x to the
set D:

d(x,D) = inf
y∈D
‖x− y‖2.

As we will see below, since D is closed, there is a unique closest point
to x that achieves the infimum on the right. It is also true that
d(x,D) is continuous as a function of x, so by the Weierstrauss ex-
treme value theorem it achieves its minimum value over the compact
set C. That is to say, there exist points c ∈ C and d ∈ D that
achieve the minimum distance

‖c− d‖2 = inf
x∈C,y∈D

‖x− y‖2.

Since C and D are disjoint, we have c− d 6= 0.

Define

a = d− c, t =
‖d‖22 − ‖c‖22

2
, ε =

‖c− d‖22
2

.

We will show that for these choices,

〈x,a〉 ≤ t− ε for x ∈ C, 〈x,a〉 ≥ t + ε for x ∈ D,

To see this, we will set

f (x) = 〈x,a〉 − t,
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and show that for any point u ∈ D, we have f (u) ≥ ε.

Here is a picture to help visualize the proof:

C

D
d

c

<latexit sha1_base64="3pJds1SI+lNMyWdEoWfDHGD3MiM="></latexit>{x : hx, ai = t}

a = d � c
<latexit sha1_base64="Xc2eDSyrYLpJm12+9yykn/bsr/w=">AAACJnicbVDLSsNAFJ34rPUVdelmsAhuLEkpKkKh4MZlBfuAJobJZNIOnTyYmQglzde48VfcuKiIuPNTnLRZ2NYDwxzOuZd773FjRoU0jG9tbX1jc2u7tFPe3ds/ONSPjjsiSjgmbRyxiPdcJAijIWlLKhnpxZygwGWk647ucr/7TLigUfgoxzGxAzQIqU8xkkpy9IaEDWj5HOHUmlhuxDwxDtSXepk1cWpPNXgJFw1cGFlayxy9YlSNGeAqMQtSAQVajj61vAgnAQklZkiIvmnE0k4RlxQzkpWtRJAY4REakL6iIQqIsNPZmRk8V4oH/YirF0o4U/92pCgQ+ZKqMkByKJa9XPzP6yfSv7FTGsaJJCGeD/ITBmUE88ygRznBko0VQZhTtSvEQ6QykyrZsgrBXD55lXRqVfOqWn+oV5q3RRwlcArOwAUwwTVognvQAm2AwQt4A1Pwob1q79qn9jUvXdOKnhOwAO3nF9tzpgU=</latexit>

t =
kdk2

2 � kck2
2

2

First, we prove the basic geometric fact that for any two vectors x,y,

if ‖x + θy‖2 ≥ ‖x‖2 for all θ ∈ [0, 1] then 〈x,y〉 ≥ 0. (2)

To establish this, we expand the norm as

‖x + θy‖22 = ‖x‖22 + θ2‖y‖22 + 2θ〈x,y〉,
from which we can immediately deduce that

θ

2
‖y‖22 + 〈x,y〉 ≥ 0 for all θ ∈ [0, 1]

⇒ 〈x,y〉 ≥ 0.

Now let u be an arbitrary point in D. Since D is convex, we know
that d + θ(u− d) ∈ D for all θ ∈ [0, 1]. Since d is as close to c as
any other point in D, we have

‖d + θ(u− d)− c‖2 ≥ ‖d− c‖2,
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and so by (2), we know that

〈d− c,u− d〉 ≥ 0.

This means

f (u) = 〈u,d− c〉 − ‖d‖
2
2 − ‖c‖22

2

= 〈u,d− c〉 − 〈d + c,d− c〉
2

= 〈u− (d + c)/2, d− c〉
= 〈u− d + d/2− c/2, d− c〉

= 〈u− d,d− c〉 +
‖c− d‖22

2

≥ ‖c− d‖
2
2

2
.

The argument that f (v) ≤ −ε for every v ∈ C is exactly the same.

We will not prove it here, but there is an even more interesting result
that says that the sets C and D do not even have to be disjoint —
they can intersect at one or more points along their boundaries as
shown here:

C

D
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Separating hyperplane theorem

Nonempty convex sets C,D ⊂ RN can be (properly) separated by
a hyperplane if and only if their relative interiors are disjoint:

relint(C) ∩ relint(D) = ∅.

See the Technical Details for what exactly is meant by “relative in-
terior” but it is basically everything not on the natural boundary of
the set once we account for the fact that it might have dimension
smaller than N .
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